翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Graph coloring problem : ウィキペディア英語版
Graph coloring

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges share the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.
Vertex coloring is the starting point of the subject, and other coloring problems can be transformed into a vertex version. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied ''as is''. That is partly for perspective, and partly because some problems are best studied in non-vertex form, as for instance is edge coloring.
The convention of using colors originates from coloring the countries of a map, where each face is literally colored. This was generalized to coloring the faces of a graph embedded in the plane. By planar duality it became coloring the vertices, and in this form it generalizes to all graphs. In mathematical and computer representations, it is typical to use the first few positive or nonnegative integers as the "colors". In general, one can use any finite set as the "color set". The nature of the coloring problem depends on the number of colors but not on what they are.
Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the classical types of problems, different limitations can also be set on the graph, or on the way a color is assigned, or even on the color itself. It has even reached popularity with the general public in the form of the popular number puzzle Sudoku. Graph coloring is still a very active field of research.
''Note: Many terms used in this article are defined in Glossary of graph theory.''
==History==

The first results about graph coloring deal almost exclusively with planar graphs in the form of the coloring of ''maps''.
While trying to color a map of the counties of England, Francis Guthrie postulated the four color conjecture, noting that four colors were sufficient to color the map so that no regions sharing a common border received the same color. Guthrie’s brother passed on the question to his mathematics teacher Augustus de Morgan at University College, who mentioned it in a letter to William Hamilton in 1852. Arthur Cayley raised the problem at a meeting of the London Mathematical Society in 1879. The same year, Alfred Kempe published a paper that claimed to establish the result, and for a decade the four color problem was considered solved. For his accomplishment Kempe was elected a Fellow of the Royal Society and later President of the London Mathematical Society.〔M. Kubale, ''History of graph coloring'', in 〕
In 1890, Heawood pointed out that Kempe’s argument was wrong. However, in that paper he proved the five color theorem, saying that every planar map can be colored with no more than ''five'' colors, using ideas of Kempe. In the following century, a vast amount of work and theories were developed to reduce the number of colors to four, until the four color theorem was finally proved in 1976 by Kenneth Appel and Wolfgang Haken. The proof went back to the ideas of Heawood and Kempe and largely disregarded the intervening developments. The proof of the four color theorem is also noteworthy for being the first major computer-aided proof.
In 1912, George David Birkhoff introduced the chromatic polynomial to study the coloring problems, which was generalised to the Tutte polynomial by Tutte, important structures in algebraic graph theory. Kempe had already drawn attention to the general, non-planar case in 1879,〔, p. 2〕 and many results on generalisations of planar graph coloring to surfaces of higher order followed in the early 20th century.
In 1960, Claude Berge formulated another conjecture about graph coloring, the ''strong perfect graph conjecture'', originally motivated by an information-theoretic concept called the zero-error capacity of a graph introduced by Shannon. The conjecture remained unresolved for 40 years, until it was established as the celebrated strong perfect graph theorem by Chudnovsky, Robertson, Seymour, and Thomas in 2002.
Graph coloring has been studied as an algorithmic problem since the early 1970s: the chromatic number problem is one of Karp’s 21 NP-complete problems from 1972, and at approximately the same time various exponential-time algorithms were developed based on backtracking and on the deletion-contraction recurrence of . One of the major applications of graph coloring, register allocation in compilers, was introduced in 1981.
==Definition and terminology==

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Graph coloring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.